

Uma mochila está a ser abastecida para uma viagem de campismo. A mochila tem uma capacidade de transporte máxima em peso e também um volume finito. O campista pode escolher de entre 4 artigos de comida para colocar na mochila. Os artigos devem maximizar o número máximo de calorias e providenciar um valor mínimo de gramas de proteínas enquanto respeita as características da mochila.

A carga não pode pesar mais de 10 kg ou ter um volume superior a 0.125 m³. Os artigos de comida devem providenciar pelo menos 200 g de proteína.

Exemplo: Mochila

Objeto	Calorias por objeto	Proteínas por objeto [g]	Peso por objeto [kg]	Volume por objeto [m ³]
Barra energética	90	5	0.25	0.00050
Sandes	130	40	0.35	0.00200
Sumo	100	15	0.35	0.00075
Maçã	40	3	0.30	0.00090

	Α	В	С	D	E	F	G	
1	Micro	osoft Excel 15.0	Answer Report	30		10 (870)	, i	
2	Work	sheet: [EXCEL_	Solver.xlsx]Mochila_Solver					
3	Repo	rt Created: 18-A	Apr-15 7:28:30 PM					
4	Result: Solver found an integer solution within tolerance. All Constraints are satisfied.							
5	Solve	er Engine						
6	En	gine: Simplex LP	•					
7	So	lution Time: 0.0	16 Seconds.					
8	Ite	erations: 0 Subpr	oblems: 14					
9	Solve	er Options						
10	M	ax Time Unlimite	ed, Iterations Unlimited, Precis	ion 0.000001, Use A	utomatic Scalin	g		
11	М	ax Subproblems	Unlimited, Max Integer Sols Ur	nlimited, Integer Tole	erance 1%, Assu	me NonNega	tive	

- O resultado do SOLVER
- Quanto tempo demorou a resolver
- Configuração

14	Ob	jective	Cell	(Max))

15	Cell	Name	Original Value	Final Value
16	\$E\$10	Totais por tipo Total de calorias	3700	3700

17 18

19 Variable Cells

20	Cell	Name	Original Value	Final Value	Integer
21	\$C\$4	Barra energética Número de artigos	5	5	Integer
22	\$C\$5	Sandes Número de artigos	25	25	Integer
23	\$C\$6	Sumo Número de artigos	0	0	Integer
24	\$C\$7	Maçã Número de artigos	0	0	Integer

- O resultado da função objetivo
- O campo "Cell" indica as variáveis de decisão
- Cuidado com as etiquetas no EXCEL
- Indicação do tipo de variável
- Valores iniciais e finais das variáveis de decisão

20

26						
27	Constraints					
28	Cell	Name	Cell Value	Formula	Status	Slack
29	\$G\$10	Totais por tipo Total de proteínas (g)	1025	\$G\$10>=\$C\$15	Not Binding	825
30	\$1\$10	Totais por tipo Peso total	10	\$I\$10<=\$C\$17	Binding	0
31	\$K\$10	Totais por tipo Volume total	0.0525	\$K\$10<=\$C\$19	Not Binding	0.0725
32	\$C\$4=Intege	r				
33	\$C\$5=Intege	r				
34	\$C\$6=Intege	r				
35	\$C\$7=Intege	r				
20				·		

- Cuidado com as etiquetas no modelo EXCEL
- Notar quais os constrangimentos que estão ativos
- Reparar nas folgas que existem por cada constrangimento
- Indicação do tipo de constrangimento

Exemplo: Problema de Cortes

Uma fábrica de garment fabrica rolos de tecido de duas dimensões: rolos com largura de 75 in e rolos com largura de 55 in. Clientes encomendam rolos com 3 larguras: rolos com 36 in, rolos de 25 in e rolos de 13 in. A fábrica tem de cortar os rolos de 75 in e 55 in de modo adequado em 36 in, 25 in e 13 in para fazer face aos pedidos e minimizar o desperdício. O que é cortado de um rolo de 75 in e 55 in não é incluído num pedido de cliente.

Quantidades encomendas, 40, 150 e 350 para cada tipo de pedido respetivamente.

Exemplo: Cutting Stock

20	Cell	Name	Original Value	Final Value	Integer
21	\$1\$5	A Número de corte	0	0	Integer
22	\$1\$6	B Número de corte	0	1	Integer
23	\$1\$7	C Número de corte	0	39	Integer
4	\$1\$8	D Número de corte	0	49	Integer
25	\$1\$9	E Número de corte	0	0	Integer
26	\$1\$10	F Número de corte	0	0	Integer
27	\$I\$11	G Número de corte	0	0	Integer
28	\$I\$12	H Número de corte	0	0	Integer
29	\$I\$13	I Número de corte	0	1	Integer
80	\$1\$14	J Número de corte	0	0	Integer
31	\$1\$15	K Número de corte	0	58	Integer

34 Constraints

				Slack
Total de cortes de 36	40	\$L\$17=\$B\$21	Binding	0
Total de cortes de 25	150	\$M\$17=\$B\$22	Binding	0
Total de cortes de 13	350	\$N\$17=\$B\$23	Binding	0
-	Total de cortes de 25 Total de cortes de 13	Total de cortes de 25 150 Total de cortes de 13 350	Total de cortes de 25 150 \$M\$17=\$B\$22	Total de cortes de 25 150 \$M\$17=\$B\$22 Binding Total de cortes de 13 350 \$N\$17=\$B\$23 Binding

Exemplo: Seleção de Máquina

Três máquina realizam a mesma tarefa genérica: produzem parafusos. Cada máquina é distinta na capacidade de produção de parafusos, nos custos de operação e na velocidade de produção. O objetivo é satisfazer uma encomenda de um cliente num tempo finito, 500 minutos, enquanto se minimizam os custos totais de realização desta encomenda. A encomenda do cliente consiste em 16000 parafusos de 1 polegada, 3000 parafusos de 2 polegadas e 400 parafusos de 3 polegadas.

	Velocidade	Custos	Capacidade de produção de parafus		e parafusos
	parafusos/min	custos/100 parafusos	1 polegada	2 polegadas	3 polegadas
Máquina 1	5	25 UM	1	1	1
Máquina 2	9	14 UM	1	1	0
Máquina 3	25	4 UM	1	0	0

Exemplo: Seleção de Máquina

Microsoft Excel 15.0 Answer Report

Worksheet: [EXCEL_Solver_Prob3_Maquina.xlsx]Sheet1

Report Created: 19-May-15 1:10:55 AM

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.016 Seconds. Iterations: 6 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$1\$7	Máquina 2 2 polegadas	1000	900

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$H\$6	Máquina 1 1 polegada	0	0	Integer
\$1\$6	Máquina 1 2 polegadas	2000	2100	Integer
\$J\$6	Máquina 1 3 polegadas	400	400	Integer
\$H\$7	Máquina 2 1 polegada	3500	3600	Integer
\$1\$7	Máquina 2 2 polegadas	1000	900	Integer
\$H\$8	Máquina 3 1 polegada	12500	12400	Integer

Exemplo: Alocação de Recursos

Quatro zonas de venda vão ser distribuídas por quatro vendedores. Cada vendedor fica alocado a uma zona apenas. É solicitado a cada vendedor pronunciar-se quanto à sua satisfação relativa a cada uma das zonas, atribuindo uma classificação de 1 a 5. Uma classificação de 5 é a mais alta e significa que o vendedor prefere esta zona às outras três zonas. Os vendedores têm de atribuir classificações distintas a zonas distintas. Utilize esta informação para realizar uma alocação de vendedores pelas zonas que maximize o grau de satisfação acumulada entre vendedores.

	zona 1	zona 2	zona 3	zona 4
Vendedor 1	1	3	5	4
Vendedor 2	4	1	5	3
Vendedor 3	5	2	4	3
Vendedor 4	4	1	2	5

Exemplo: Alocação de Recursos

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$F\$10	Satisfação acumulada	18	18

Variable Cells

Cell	Name	Original Value	Final Value Integer
\$G\$4	Vendedor 1 Em Z1	0	0 Contin
\$H\$4	Vendedor 1 Em Z2	1	1 Contin
\$1\$4	Vendedor 1 Em Z3	0	0 Contin
\$J\$4	Vendedor 1 Em Z4	0	0 Contin
\$G\$5	Vendedor 2 Em Z1	0	0 Contin
\$H\$5	Vendedor 2 Em Z2	0	0 Contin
\$1\$5	Vendedor 2 Em Z3	1	1 Contin
\$J\$5	Vendedor 2 Em Z4	0	0 Contin
\$G\$6	Vendedor 3 Em Z1	1	1 Contin
\$H\$6	Vendedor 3 Em Z2	0	0 Contin
\$1\$6	Vendedor 3 Em Z3	0	0 Contin
\$J\$6	Vendedor 3 Em Z4	0	0 Contin
\$G\$7	Vendedor 4 Em Z1	0	0 Contin
\$H\$7	Vendedor 4 Em Z2	0	0 Contin
\$1\$7	Vendedor 4 Em Z3	0	0 Contin
\$J\$7	Vendedor 4 Em Z4	1	1 Contin

Exemplo: Custos de Expedição

Uma companhia produz os seus produtos em três fábricas e entrega-os a três lojas. Cada uma das três lojas encomenda um pedido de quantidades distintas de cada uma das fábricas, enquanto as fábricas têm quantidades distintas de produtos disponíveis para expedição para as lojas. Os custos de expedição por unidade de produto são diferentes para cada fábrica e loja. Determinar a quantidade ótima de produto para expedir de cada fábrica para cada loja de modo a minimizar os custos de expedição totais ao mesmo tempo que se cumprem as encomendas pedidas pelas lojas.

	loja 1	loja 2	loja 3
Fábrica 1	4	1	7
Fábrica 2	6	2	2
Fábrica 3	3	4	3

ESCE 20

Otimização Logística

Exemplo: Custos de Expedição

Estão disponíveis 100, 200 e 130 unidades para expedição nas fábricas 1, 2 e 3 respetivamente. Os pedidos de loja são 110, 40 e 240 para as lojas 1, 2 e 3 respetivamente.

Exemplo: Custos de Expedição

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$F\$14	Custo Total Expedição (minimizar)	1890	910

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$E\$7	Fábrica 1 Unidades expedidas	0	20 1	nteger
\$E\$8	Fábrica 2 Unidades expedidas	110	0 1	nteger
\$E\$9	Fábrica 3 Unidades expedidas	0	90 1	nteger
\$G\$7	Fábrica 1 Unidades expedidas	0	40 1	nteger
\$G\$8	Fábrica 2 Unidades expedidas	0	0 1	nteger
\$G\$9	Fábrica 3 Unidades expedidas	40	0 1	nteger
\$1\$7	Fábrica 1 Unidades expedidas	100	0 1	nteger
\$1\$8	Fábrica 2 Unidades expedidas	50	200 1	nteger
\$1\$9	Fábrica 3 Unidades expedidas	90	40 1	nteger

Exemplo: Custos de Compra e Transporte

Quatro fábricas de uma companhia compram o mesmo produto A de quatro fornecedores distintos. Cada um dos fornecedores indica um preço unitário diferente para o produto A. Os custos de expedição unitário também variam entre os quatro fornecedores e as quatro fábricas. Cada fábrica requer uma quantidade distinta do produto A e cada um dos quatro fornecedores tem uma quantidades distinta de produto A disponível. Determinar a quantidade óptima do produto A a comprar e transportar entre cada fornecedor e fábrica de modo a minimizar o custo de compra e de transporte.

	fornecedor 1	fornecedor 2	fornecedor 3	fornecedor 4
Fábrica 1	4	3	6	3
Fábrica 2	7	4	4	5
Fábrica 3	2	5	5	6
Fábrica 4	6	6	8	4

Exemplo: Custos de Compra e Transporte

Estão disponíveis 100, 15, 20 e 150 unidades para expedição nos fornecedores 1, 2, 3 e 4 respetivamente. As necessidades são de 20, 30, 40 e 50 para as fábricas 1, 2, 3 e 4 respetivamente.

fornecedor 1	fornecedor 2	fornecedor 3	fornecedor 4
12	11	11	12

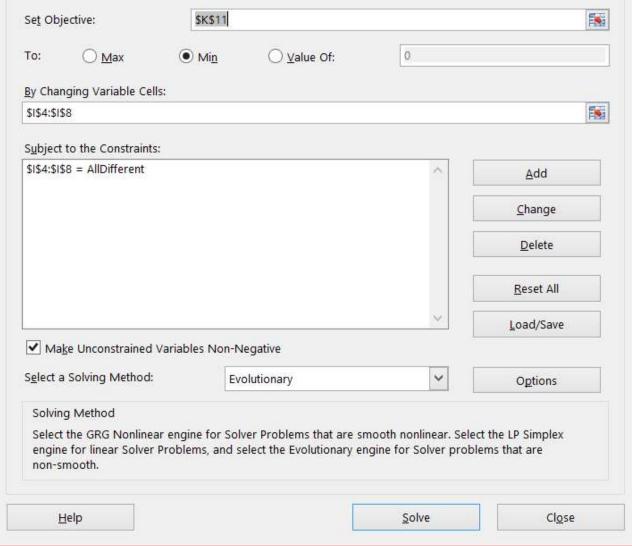
Custo unitário do produto

Exemplo: Custos de Compra e Transporte

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$E\$15	Minimizar o custo total	2105	2105

Variable Cells


Cell	Name	Original Value	Final Value	Integer
\$G\$7	Fábrica 1 Unidades do Fornecedor 1	0	0	Integer
\$H\$7	Fábrica 1 Unidades do Fornecedor 2	5	5	Integer
\$1\$7	Fábrica 1 Unidades do Fornecedor 3	0	0	Integer
\$J\$7	Fábrica 1 Unidades do Fornecedor 4	15	15	Integer
\$G\$8	Fábrica 2 Unidades do Fornecedor 1	0	0	Integer
\$H\$8	Fábrica 2 Unidades do Fornecedor 2	10	10	Integer
\$1\$8	Fábrica 2 Unidades do Fornecedor 3	20	20	Integer
\$J\$8	Fábrica 2 Unidades do Fornecedor 4	0	0	Integer
\$G\$9	Fábrica 3 Unidades do Fornecedor 1	40	40	Integer
\$H\$9	Fábrica 3 Unidades do Fornecedor 2	0	0	Integer
\$1\$9	Fábrica 3 Unidades do Fornecedor 3	0	0	Integer
\$J\$9	Fábrica 3 Unidades do Fornecedor 4	0	0	Integer
\$G\$10	Fábrica 4 Unidades do Fornecedor 1	0	0	Integer
\$H\$10	Fábrica 4 Unidades do Fornecedor 2	0	0	Integer
\$I\$10	Fábrica 4 Unidades do Fornecedor 3	0	0	Integer
\$J\$10	Fábrica 4 Unidades do Fornecedor 4	50	50	Integer

Exemplo: Caixeiro Viajante

Um caixeiro viajante que vive em Chicago tem de visitar 4 cidades: LA., Denver, Boston e Dallas. Ele tem de começar e acabar na sua cidade. Ele deve selecionar a ordem dos clientes a visitar que minimiza a distância de viagem.

	Boston	Chicago	Dallas	Denver	L.A.
Boston	0	983	1815	1991	3036
Chicago	983	0	1205	1050	2112
Dallas	1815	1205	0	801	1425
Denver	1991	1050	801	0	1174
L.A.	3036	2112	1425	1174	0

Exemplo: Caixeiro Viajante Solver Parameters

Exemplo: Caixeiro Viajante

Result: Solver cannot improve the current solution. All Constraints are satisfied.

Solver Engine

Engine: Evolutionary

Solution Time: 46.812 Seconds. Iterations: 0 Subproblems: 116302

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Convergence 0.0001, Population Size 100, Random Seed 0, Mutation Rate 0.075, Time w/o Improve 30 sec, Require Bounds
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$K\$11	Objetivo	6447	6447

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$1\$4	1ª Cidade Linha da cidade	3	3	AllDiff
\$1\$5	2ª Cidade Linha da cidade	5	5	AllDiff
\$1\$6	3ª Cidade Linha da cidade	4	4	AllDiff
\$1\$7	4ª Cidade Linha da cidade	2	2	AllDiff
\$1\$8	5ª Cidade Linha da cidade	1	1	AllDiff

Constraints

NONE					
\$I\$4:\$I\$8=AllDiff					

Exemplo: Alocação de Tarefas

Trabalhos: conjunto de tarefas a realizar, j = 1, ..., m

Processadores conjunto de máquinas, $i = 1, \ldots, n$

Tempo: t_{ij} tempo de execução da tarefa j na máquina i

Makespan: C_{\max} tempo de término do processador mais carregado

min
$$C_{\max}$$
 $s.a.$ $\sum_{i} x_{ij} = 1, \ \forall j$

$$\sum_{i} t_{ij} x_{ij} \leq C_{\max}, \ \ \forall i$$
 $x_{ij} \in 0, 1$

Exemplo: Alocação de Tarefas

Pretende-se alocar tarefas a três máquinas. As tarefas têm tempos de execução diferentes em cada máquina. Pretende-se realizar uma distribuição de tarefas por máquina de modo a minimizar o tempo de conclusão de operação das 3 máquinas.

Máquina	Tarefa A	Tarefa B	Tarefa C	Tarefa D	Tarefa E	Tarefa F	Tarefa G
1	2	4	5	5	3	2	2
2	3	3	4	5	3	3	3
3	2	3	3	6	4	4	3

Exemplo: Alocação de Tarefas

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$Q\$9	Objetivo	8	8

Variable Cells

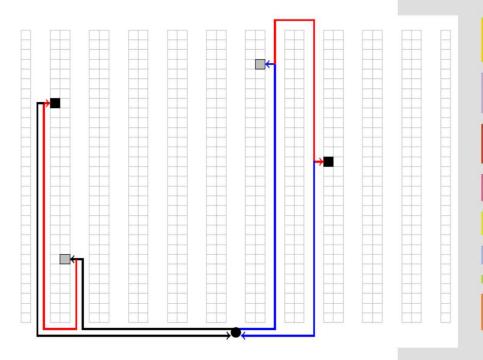
Cell	Name	Original Value	Final Value	Integer
\$J\$4	Maquina 1 TA	1	1	Binary
\$K\$4	Maquina 1 TB	0	0	Binary
\$L\$4	Maquina 1 TC	0	0	Binary
\$M\$4	Maquina 1 TD	0	0	Binary
\$N\$4	Maquina 1 TE	1	1	Binary
\$0\$4	Maquina 1 TF	0	1	Binary
\$P\$4	Maquina 1 TG	1	0	Binary
\$J\$5	Máquina 2 TA	0	0	Binary
\$K\$5	Máquina 2 TB	1	1	Binary
\$L\$5	Máquina 2 TC	0	0	Binary
\$M\$5	Máquina 2 TD	1	1	Binary
\$N\$5	Máquina 2 TE	0	0	Binary
\$0\$5	Máquina 2 TF	0	0	Binary
\$P\$5	Máquina 2 TG	0	0	Binary
\$J\$6	Máquina 3 TA	0	0	Binary
\$K\$6	Máquina 3 TB	0	0	Binary
\$L\$6	Máquina 3 TC	1	1	Binary
\$M\$6	Máquina 3 TD	0	0	Binary
\$N\$6	Máquina 3 TE	0	0	Binary
\$0\$6	Máquina 3 TF	1	0	Binary
\$P\$6	Máquina 3 TG	0	1	Binary
	- 7/9			

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$J\$8	R1	1	\$J\$8=\$I\$11	Binding	0
\$K\$8	R2	1	\$K\$8=\$I\$12	Binding	0
\$L\$8	R3	1	\$L\$8=\$I\$13	Binding	0
\$M\$8	R4	1	\$M\$8=\$I\$14	Binding	0
\$N\$8	R5	1	\$N\$8=\$I\$15	Binding	0
\$0\$8	R6	1	\$0\$8=\$I\$16	Binding	0
\$P\$8	R7	1	\$P\$8=\$I\$17	Binding	0
\$J\$4:\$P\$6=Bin	ary				

Aplicações

ESCE 20


Otimização Logística

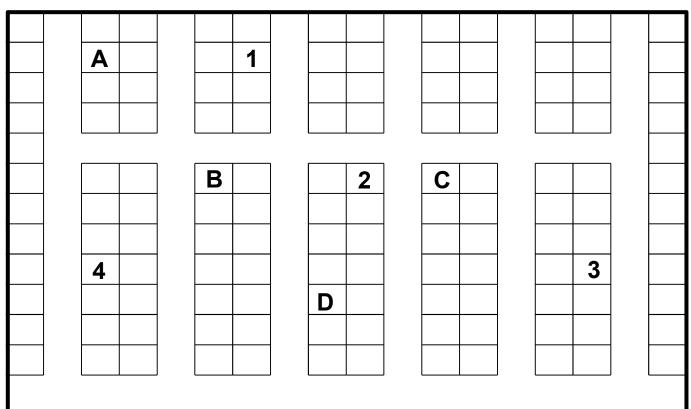
Trabalho – Ciclo Duplo Ciclo simples

receiving and shipping

50% do trabalho em vazio

Ciclo duplo

Interposição de picking na armazenagem


Trabalho – Ciclo Duplo

Definição dos pares inserção/recolha:

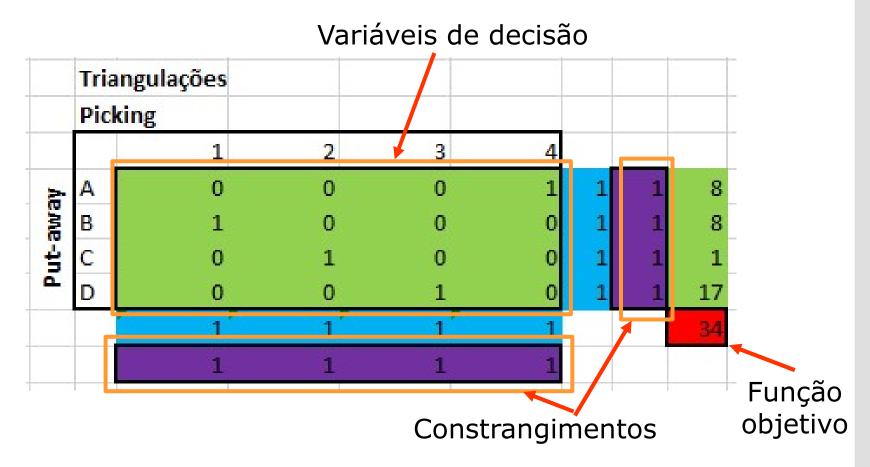
Caso não exista número correspondente de inserções e recolhas introduzem-se movimentos dummy para acerto

Trabalho – Ciclo Duplo

Quais os ciclos duplos de operação ótima considerando putaway nas localizações A, B, C e D e picking nas localizações 1, 2, 3 e 4?

Trabalho – Ciclo Duplo

A) Determinação das distâncias mínimas entre inserções/recolha


	1	2	3	4
Α	12	14	23	8
В	8	9	18	9
С	8	1	12	15
D	9	10	17	4

B) Formalização do problema ótimo em EXCEL

	Locali	zações						
	Picking							
		1	2	3	4			
vay	Α	12	14	23	8			
Put-away	В	8	9	18	9			
Put	С	8	1	12	15			
	D	9	10	17	4			

		ingulações						
	PIC	king	2	2	4			
	Α	0	0	0	1	1	1	8
Put-away	В	1	0	0	0	1	1	8
#	С	0	1	0	0	1	1	1
۵	D	0	0	1	0	1	1	17
		1	1	1	1			34
		1	1	1	1			

Trabalho – Ciclo Duplo

Os emparceiramentos são: (A,4) (B,1) (C,2) (D,3)

